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Problem Set 1
Solutions

1. a) simple cubic lattice

Let’s assume that the lattice constant is a and that the spin at the origin is up: S(0, 0, 0) = 1.
Then its nearest neighbors are the points (x, y, z), where one of x, y, z is ±a and the others are
zero. The spins at all these locations are equal to −1. The points closest to the origin where
S = 1 are (±a

√
2,±a

√
2, 0), etc. Therefore, the sublattice of positive spins L+ is an FCC lattice

of primitive vectors e1 = (a
√

2, a
√

2, 0), e2 = (a
√

2, 0, a
√

2), e3 = (0, a
√

2, a
√

2) and conventional
lattice constant b = 2a

√
2. The sublattice L− corresponding to spins S = −1 is identical.
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9. Since βHE [ψ] is a polynomial in variables ψ1, ψ2, . . . , ψn, it is equal to its Taylor expansion in
the same variables, around any fixed value. Let us consider the Taylor expansion of βHE [ψ] around
the point (0, 0, . . . , 0) :

βHE [ψ] =
∞∑
m=0

1
m


n∑

α1,...,αm=1

Ũα1,...,αmψα1 · ψα2 · . . . · ψαm


Identifying this expansion with the closed form of βHE [ψ], we conclude immediately that the only
non-zero coefficients are Ũii, Ũ<iijj> and Ũ<iijjkk>, where i, j, k = 1, n and < . . . > means any
permutation of the indices enclosed.

To determine the non-zero coefficients, we must consider all possible permutations of indices in
the given combinations. Obviously, we have Ũii = u2, Ũiiii = u4, Ũiiiiii = u6 for all i = 1, n, because
there is no redundancy in these sets of indices. For the case Ũ<iijj>, i 6= j, we have an overall
factor of 4!

2!·2! = 6, but the monoms (ψiψj)2 have an overall factor of 2 in βHE [ψ] so we obtain
Ũ<iijj> = u4

3 . For the case Ũ<iijjkk>, i 6= j 6= k 6= i, we obtain the combinatorial factor 6!
(2!)3

= 60,
while the monoms (ψiψjψk)2 are multiplied by 3! = 6 in βHE [ψ], so Ũ<iijjkk> = u6

10 , if i 6= j 6= k 6= i.
Finally, if i 6= j, we have a combinatorial factor of 6!

4!·2! = 15 and the monoms (ψi)4(ψj)2 have an
overall factor of 3, thus Ũ<iiiijj> = u6

5 .
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10. At the mean field configuration, βHE [ψ] reaches a minimum. Since all the terms in the integral
are positive, βHE [ψ] ≥ 0 and we conclude that the minimum is obtained for ψMF (x) = 0 everywhere.
To compute the Fourier transform of the correlation function, calculate the invers Green function

G−1(x, y) =
δ[βHE ]

δψ(x)δψ(y)
= (r − c∆x)δ(x− y) +O(ψ2)

The only term which might pose a problem in this derivation is the second one. Here is one way of
deriving the correct sign:

Discretize βHE [ψ] as

βHE [ψ] = lim
a→0,N→∞

N∑
i=1

{
. . .+

c

2

[
ψ(ia+ 1)− ψ(ia)

a

]2

+ . . .

}
,

then

∂[βHE ]
∂ψ(ia)

= lim
a→0

c

{
ψ(ia)− ψ(ia+ 1) + ψ(ia)− ψ(ia− 1)

a2

}
= −c∂

2ψ

∂x2
δ(x− ia)

This derivation can be easily generalized to the multidimensional case.

Evaluating the invers Green function at the mean field configuration, we obtain

G−1
MF (x, y) = (r − c∆x)δ(x− y),

so it is a diagonal operator. Its invers, the correlation function, will therefore be a diagonal operator
as well:

GMF (x− y) = (r − c∆x)−1

Using the Fourier transform for the correlation function (it is important to realize that the field
vanishes along with all its derivatives at the mean field configuration), we can write

(r − c∆x)
∫

ddq

(2π)d
eiqxG(q) = δ(x− y) =

∫
ddq

(2π)d
eiqx,

which gives (r + cq2)G(q) = 1, so that

G(q) =
1

r + cq2
.

11. By an argument similar to the one used in problem 10, we look for the minimum of βHE [ψ]
among the field configurations of constant value, ψ(x) = φ. To find the minimum of V (φ), note
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that V (±∞) = ∞ and that for φ < 0, V (φ) > 0. Moreover, V (φ) = 0 ⇒ φ2(1
2 −

v
3φ + 1

4φ
2) = 0.

A simple calculation shows that if v < 3√
2
, the only real solution is φ = 0, so the minimum of V

is reached for φ = 0. For v = 3√
2
, V = 0 both at φ = 0 and at φ =

√
2 and is positive for all

other values. For the case v > 3√
2
, there are three solutions to V (φ) = 0, namely φ = 0 and two

other, positive and distinct roots, φ1 and φ2. Clearly, in this case, V reaches its minimum at φc,
somewhere in the interval [φ1, φ2].

To summarize, we have:

For the case v < 3√
2
, the only solution is φ = 0 and the problem reduces to problem 10. Thus,

we obtain ψMF = 0 and GMF (q) = 1/(r + cq2). All the higher order terms in V are irrelevant in
this case.

If v = 3√
2
, the mean field configuration is degenerate, φ = 0 and φ =

√
2. The system will choose

one of these minima depending on how the critical value vc = 3√
2

is approached. If v is approached
from values smaller than vc, then the mean field configuration is again φ = 0. If v goes to 3/

√
2

from larger values, the system will choose the configuration φ =
√

2. In this case, one obtains for
the invers Green function at φ =

√
2

G−1(x− y) = [−c∆x + r(1− 2
√

2v + 6)] = r − c∆x,

so one retreives again the results of problem 10.

Finally, if v > 3√
2
, the minimum is reached when φ > 0, dV

dφ = 0 ⇒ φ[1 − vφ + φ2] = 0 ⇒
[1 − vφ + φ2] = 0, and d2V

dφ2 > 0 ⇒ [1 − vφ + φ2] + φ(2φ − v) > 0 ⇒ φc >
v
2 . Eliminating the null

root, the solutions to dV
dφ = 0 are φ± = v±

√
v2−4
2 , so we conclude that φc = v+

√
v2−4
2 . Evaluating(

d2V
dφ2

)
φc

, we obtain (
d2V

dφ2

)
φc

= rφc(2φc − v) =
(v +

√
v2 − 4)

√
v2 − 4

2
,

and we label it rc. After calculations identical to those in problem 10, we obtain

G(q) =
1

rc + cq2
.

12. Let us assume that α(b) is a monotonous, continuous function and define f(x) = logα(log b),
where x = log b and f = logα. The function f will also be continuous and monotonous. Then the
defining relation gives

logα(ex) + logα(ey) = logα(ex+y)⇒ f(x+ y) = f(x) + f(y),
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where x = log b, y = log b′. Note also that α(1) = 1, so logα(log(1)) = 0 ⇒ f(0) = 0. From the
monotony of f , either f(1) = 0 and then f(x) = 0 for all x > 0, so α(b) = 1 = bf(1), or f(1) 6= 0.
We label f(1) = y. Consider now a positive integer q and write

y = f(1) = f

(
1
q

+ . . .+
1
q

)
= q · f

(
1
q

)
⇒ f

(
1
q

)
=
y

q
.

Let now p be any positive integer, then

p

q
y = f

(
1
q

)
+ . . .+ f

(
1
q

)
= f

(
p

q

)
.

These relations prove that for any rational number p/q ∈ Q+, f(pq ) = y pq . Since the set of rationals
is dense in the set of reals and f is a continuous function, we obtain that for any sequence of rationals
p/q → x ∈ R+, f(p/q) → yx. Thus, for any positive real x, f(x) = yx ⇒ f(log b) = y log b ⇒
α(b) = exp(f(x)) = by.

13. From the defining formula for M(µ),

M(µ) =
〈

1√
V

∫
ddq

(2pi)d
ψ(q)

〉
,

it follows that under the RG transformation,

〈ψ(q)〉 → αb〈ψ′(q)〉,
√
V → bd/2

√
V ′, ddq → b−dddq′,

so we obtain the desired scaling law.

14. Let us define the integral I(y) =
∫
dtj(t, y)φ(t), where j is a suitably chosen distribution,

independent on φ. Then it is straightforward to compute (for example, by discretization) that

δI(y)
δφ(x)

= j(y, x).

Consider now the exponential eI(y) =
∞∑
n=0

I(y)n

n!
and compute

δeI(y)

δφ(x)
=

( ∞∑
n=0

I(y)n

n!

)
j(t, x).

Now make the choice of distribution j(t, y) = λδ(t− y) and get I(y) = λφ(y), so eI(y) = eλφ(y) and

δeI(y)

δφ(x)
=

( ∞∑
n=0

λn

n!
δnφ(y)
δφ(x)

)
=

( ∞∑
n=0

(λφ(y))n

n!

)
λδ(x− y)

Identifying the coefficients in the λ expansion gives us the desired result.
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Next, consider the integral J = −1
2

∫
dyφ2(y) and compute

δJ

δφ(x)
= −φ(x)

(again, by discretization). Repeating the calculation above we get

δeJ

δφ(x)
= −

( ∞∑
n=0

Jn

n!

)
φ(x) = −φ(x)eJ .

For the last excercise, rewrite J =
∫
dyφn(y)(∇φ(y))2 as

J =
∫
dy∇

(
φn+1(y)
n+ 1

)
· ∇φ(y) =∫

dy∇
(
φn+1(y)
n+ 1

∇φ(y)
)
−
∫
dy
φn+1(y)
n+ 1

(∇2φ(y)) =

−
∫
dy
φn+1(y)
n+ 1

(∇2φ(y)) (1)

for any well-behaved function φ.
Formal derivation then gives

δJ

δφ(x)
= −

[
φn(x)∇2φ(x) +

φn+1(x)
n+ 1

∇2
x

]
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15. Define the Fourier transform as

I(r, p) =
1

(2π)d

∫ ∞
−∞

dd~q
ei~q~r

q2 + p2
,

where we identify p = ξ−1. The fact that I only depends on the magnitude of ~r is easy to understand,
given the explicit invariance of the integral under rotations of vectors ~r and ~q. Now define the
function

J(r, t) =
1

2π

∫ ∞
−∞

dteitpI(r, p),

in other words, the Fourier transform of I with respect to the variable p. Obviously,
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I(r, p) =
∫ ∞
−∞

dte−itpJ(r, t),

so the problem becomes finding the function J . Applying the d + 1 dimensional Laplace operator
∆d+1 = ∆~r + ∂2

∂t2
to J , we obtain by elementary calculus

∆d+1J(r, t) = −δd+1(~r, t).

This important relation tells us that J is the Green’s function of the Laplace operator in d + 1
dimensions. In more physical terms, it is the electrostatic potential created by a negative unit
charge sitting at the origin in the space Rd+1.

The Green’s function of the Laplace operator in d+1 dimensions is (see note 1 below for details)

Gd+1(~x) =
1

(1− d)Sd+1

(√
x2

1 + x2
2 + . . .+ x2

d+1

)d−1
,

where d > 1 and Sn is the area of the sphere of unit radius in n dimensions.
We conclude that

I(r, p) =
1

(d− 1)Sd+1

∫ ∞
−∞

dt
e−itp(√

r2 + t2
)d−1

.

To compute this integral, use a trick usually attributed to Feynman, but due to Lagrange. From
the normalization formula of gaussian integrals, derive

1√
α2

=
1√
2π

∫ ∞
−∞

dye−
y2α2

2 ,

so

I(r, p) =
1

(d− 1)(
√

2π)d−1Sd+1

∫ ∞
−∞

dtdy1dy2 . . . dyd−1e
−itp− r

2+t2

2 [y21+...+y2d−1]

Making the change of dummy y coordinates from cartesian to spherical, we obtain

I(r, p) =
Sd−1

(d− 1)(
√

2π)d−1Sd+1

∫ ∞
−∞

dρdtρd−2e−itp−
ρ2(r2+t2)

2 .

Now perform the integral in the variable t by completing the square and applying the gaussian
formula and obtain

−itp− t2ρ2

2
= −ρ

2

2

[
t+

ip

ρ2

]2

− p2

2ρ2
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I(r, p) =
Sd−1

(d− 1)(
√

2π)d−2Sd+1

∫ ∞
−∞

dρρd−3e
− 1

2
ρ2r2− p2

2ρ2 .

The experienced reader will realize at this point the similarity between this integral and the so-called
Sonine integral formula defining Bessel functions. To make the analogy work, perform the change
of variables [

r2ρ2 +
p2

ρ2

]
= −z

[
eiζ − e−iζ

]
⇒ −z2 = (rp)2 ⇒ z = irp.

Also, from

r2ρ2 = irpe−iζ → ρ =
√
p

r
ei[−

ζ
2

+π
4 ]

The same formula indicates that the new variable must have the form ζ = π
2 + iw, where w is any

real number. Finally, ρ = 0 corresponds to w = −∞.

We conclude that the integration now takes place along the line Re(ζ) = π
2 and the integral becomes

(from dρ
ρ = − i

2dζ)

I(r, p) =
Sd−1

(d− 1)(
√

2π)d−2Sd+1

i

2

(√
p

r

)d−2

e
iλπ
2

∫
C
dζeiz sin ζ−iλζ ,

where λ = d
2 − 1 and C is the contour described above. From the standard integral definitions of the

Bessel functions of the third kind (the Hankel functions),

H
(1)
λ (z) =

1
π

∫
C
dζeiz sin ζ−iλζ ,

so

I(r, p) =
Sd−1

(d− 1)(
√

2π)d−2Sd+1

(√
p

r

)d−2
iπ

2
e
iλπ
2 H

(1)
λ (irp).

The combination

iπ

2
e
iλπ
2 H

(1)
λ (irp) = Kλ(rp)

is one of the Bessel functions of the fourth kind and was first identified by MacLauren (1899). We
conclude that

I(r, p) =
Sd−1

(d− 1)Sd+1

(√
p

2πr

)d−2

K d
2
−1(rp).

Using the formula (see note 2)
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Sd =
(
√

2π)d

2d/2−1Γ(d/2)
,

we finally conclude that

I =
1

2π

(√
1

2πξr

)d−2

K d
2
−1(r/ξ).

For future reference, please note that

K1/2(rp) =
√

π

2rp
e−rp,

so for d = 3 we obtain

I =
1

2π

√
p

2πr

√
π

2rp
e−rp =

e−r/ξ

4πr
,

the Yukawa formula for the correlation function due to interactions through a massive particle.

Note 1. If n > 2, the Green’s function for the Laplace operator in n dimensions is

Gn(r) =
1

(2− n)Snrn−2

simply because its gradient is

~∇Gn =
r̂

Snrn−1
,

so ∫
r≤R

d~r∆Gn(r) =
∫
d~r~∇ · ~∇Gn =

∫
r=R dΩn

Sn
= 1,

for any value of the radius. We also have

∆n =
∂2

∂r2
+
n− 1
r

∂

∂r
+

∆angles

r2
,

which by brute force calculations gives

∆nGn = 0,

for all r 6= 0, so Gn is the Green’s function for the Laplace operator in n dimensions.

Note 2 The standard method for finding the area of the sphere of unit radius in d dimensions is
computing the integral
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I =
(∫ ∞
−∞

e−
x2

2

)d
in two different ways. First, use the gaussian normalization and obtain

I = (
√

2π)d.

Changing from cartesian to spherical coordinates, we obtain

I = Sd

∫ ∞
0

dr[rd−1e−
r2

2 ] = 2d/2−1Sd

∫ ∞
0

dtt(d/2−1)e−t = 2(d/2−1)SdΓ(d/2).

Equating the two expressions, one gets

Sd =
(
√

2π)d

2(d/2−1)Γ(d/2)
.

16. Since only the leading term in r is required, use

[
1 +

r

ck2

]−n
' 1− n r

ck2

and obtain for the first integral

K̃4

2c

[
Λ2 −

(
Λ
b

)2
]
− K̃4r

c2
log b.

The same approximation yields for the second integral,

2K̃4

c2
log b− 2K̃4r

c3Λ2
(b2 − 1).

17. The determinant is

∆ = (by1 − λ) (by2 − λ) ,

so the eigenvalues are

λ1 = by1 , λ2 = by2 .

The normalized eigenvectors are

v1 =

(
1
0

)
, v2 =

√1 +
[
by2 − by1
D0(b2 − 1)

]2
−1(

1
by2−by1
D0(b2−1)

)
.
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18. As indicated in previous homework sets, the mean field configuration is constant, independent
on x, so it is found by minimizing the polynomial in |ψ|2.

Case 1. For T > Tc, all coefficients are positive, so ψMF = 0. In this case,

δ2[βHE ]
δψ(x)δψ(y)

= (|r| − c∆)δ(x− y),

so

C(~q) =
1

|r|+ cq2
,

Case 2. For T < Tc, the mean field configuration is given to first order by

−|r|+ u|ψ|2 + u(6)|ψ|4 = 0⇒ ψMF '
√
|r|
u
,

because for |r| → 0, a power expansion of ψ in
√
|r| washes away the term proportional to ψ4. The

stability matrix will be given by

δ2[βHE ]
δψ(x)δψ(y)

= (−|r| − c∆ + 3uψ2 + 5u(6)ψ4)δ(x− y),

so that

C(~q) =
1

2|r|+ cq2 +O(|r|2)

We conclude that, close to Tc,

ψ ∼ |T − Tc|1/2, C(~q) =
1

2|r|+ cq2
⇒ ξ−2 ∼ |T − Tc|, C(q, T = Tc) ∼

1
q2
, C(0) ∼ |T − Tc|−1,

so that

β =
1
2
, ν =

1
2
, η = 0, γ = 1,

and the coefficients do not depend on u(6).

19. The coefficient f must be positive, otherwise a saddle point (mean field) configuration may not
exist. This is not allowed, because any physical system must have a ground state to be observable.
The mean field configuration will therefore be given by a constant value ψMF , so it will be determined
again by the value minimizing the potential in ψ. We conclude that the analysis performed in
problem 18 applies and that the critical behavior does not depend on f . The only contribution this
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term could have is in the exponent η, but since for small q, q4 is negligible compared to q2, we obtain
again η = 0.

To compute the variance 〈(δx)2〉, note that

S = M(0) =
(

V

(2π)d

)1/2 ∫
ddq

1
κ|r|+ cq2 + fq4

,

where κ is 1 for T > Tc and 2 for T < Tc. Obviously, the integral does not diverge for small values
of Λ (infrared divergence), and for large values of Λ it behaves as∫ Λ qd−1

q4
dq ∼ log Λ for d = 4 and Λd−4 for d 6= 4.

We conclude that the integral converges for d < 4. For d = 3, we have

I =
∫ ∞

0
dq

q2

fq4 + cq2 + κ|r|
.

The polynomial P (q) = fq4 + cq2 + κ|r| has roots given by

(q2)1,2 =def −a2
1,2 = −

−c±
√
c2 − 4κ|r|f
2f

.

We can use the decomposition

q2

(q2 + a2
1)(q2 + a2

2)
=

1
a2

1 − a2
2

[
a2

1

q2 + a2
1

− a2
2

q2 + a2
2

]
and obtain

I =
∫ ∞

0
dq

q2

f [(q2 + a2
1)(q2 + a2

2)]
=

1
f

∫ ∞
0

dq
1

a2
1 − a2

2

[
a2

1

q2 + a2
1

− a2
2

q2 + a2
2

]
Now use ∫ ∞

0
dx

1
x2 + a2

=
π

2a

and write

I =
π

2f
1

a1 + a2
' π

2
√
cf

as f → 0,

where the positive constants a1,2 have been previously defined. Clearly, the integral diverges if
f = 0.
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